High Throughput Bioengineering Using a Microfluidic Platform

Lauren Washburn 1,2*(lwashburn@lbl.gov), Jess Sustarich 1,2* (jsustarich@lbl.gov), William R. Gaillard 1,2, Kosuke Iwai 1,2, Peter W. Kim 1,2, Kai Deng 1,2, Stephen Tan 1,3, Trent R. Northen 1,4,6, Nathan J. Hillson 1,3,6, Hector Garcia Martin 1,3,4, Paul D. Adams 1,4,5,7, and Anup K. Singh 1,2

1Joint BioEnergy Institute, Emeryville, CA; 2Biological and Material Science, Sandia National Laboratories, Livermore, CA; 3Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA; 4Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA; 5Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA; 6DOE Joint Genome Institute, Walnut Creek, CA; and 7University of California, Berkeley, CA

https://www.jbei.org/research/divisions/technology/microfluidic-assays/

Project Goals: The JBEI mission is to conduct basic and applied research to enable cost-effective conversion of lignocellulosic biomass into biofuels and bioproducts. The goal of this project, performed in the Microfluidic Assays group in the Technology Division at JBEI, is to develop a robust and easy-to-use droplet microfluidic platform to automate the steps involved in engineering of metabolic pathways to produce biofuel molecules.

Synthetic biology offers a promising approach to produce biofuel and other chemicals. Optimization of metabolic pathways however, requires conducting a large number of experiments that are labor-intensive with repetitive pipetting and plating and require large amounts of expensive reagents. Robotic liquid handling stations represent a solution to automate genetic engineering processes however, they still require large volume of reagents and their high equipment and maintenance cost can be prohibitive to many users. Microfluidic platforms offer a promising alternative as they provide improvement over their macroscale counterparts in cost, amounts of reagents required, speed, and integration.

We are developing microfluidic devices for biofuel research applications including enzyme screening, enzyme evolution, and optimization of metabolic pathways. Our droplet-based microfluidic platforms use digital microfluidic (DMF) format where tiny (nL) aqueous droplets suspended in oil are manipulated on an electrode array using electrowetting on dielectric concept.1-5 The systems can handle large numbers of droplets at once as well as actively manipulate droplets in a programmable manner, and are capable of multiple steps of droplet manipulation including formation of aqueous droplets and encapsulation of reagents and cells, electric-field driven merge and split of the droplets to add or remove liquid, on-chip electroporation, and incubation steps with localized temperature control.

One example platform is a device for multiplexed electroporation for automating CRISPR-based MAGE recombineering in E. coli.6 The device uses an array format with 100 elements, each containing sets of electrodes for two electric field actuated operations- electrowetting for merging droplets and electroporation for transformation. Reagents are introduced into the chip by dispensing droplets, are kept separate until ready to mix, mixed on-demand by merging droplets by electrowetting, and transform cells by on-chip electroporation. Additional reservoirs allow recovery incubation and screening on chip. The configuration of the chip uses a 384-well template
and is easily integrable with liquid handling robots. We validate our microfluidic chip by performing targeted genomic changes through CRISPR-based MAGE (CRMAGE) recombineering for the biosynthetic pathway producing the sustainable pigment indigoidine in *E. coli*. The automated platform for multiplexed transformation holds the promise of accelerating the design-build-test-learn cycle.

References


This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.